Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure
نویسندگان
چکیده
The use of forward osmosis (FO) is of growing interest for water desalination, due to its potential energy savings. However, its industrial implementation is still limited by its actual performance limitation inwater permeation and reverse salt diffusion, due to membrane properties. Assisted forward osmosis (AFO) is a new concept, aiming at pressurising the feed solution to enhance water permeation through synergising osmotic and hydraulic driving forces. This paper presents the impact of hydraulic pressure on the FO membrane properties and the overall performances of the system in order to validate the interest of AFO. When 6 bar was applied on the feed side of the process, the membrane water permeability (A) was observed to double, mainly due to the membrane deformation against the spacers. Under those conditions, the additional driving force provided resulted in 70% increase in permeation flux, despite the more severe concentration polarisation. More interestingly, the observed reverse salt diffusion was significantly lower than expected by the solution diffusion model, confirming the interest of AFO in tackling current limitations of FO technology. This study also revealed the relative limitations of the current methodology used for the determination of membrane solute and water permeabilities, which currently fail to consider membrane deformation that could arise in pressure retarded osmosis and AFO systems. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina
Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...
متن کاملA numerical study of the effect of channel spacers on the performance of cross-flow forward osmosis membrane modules
In this paper, we perform two-dimensional simulations of cross-flow forward osmosis (FO) membrane modules in the presence of draw and feed channel spacers. For this purpose, the equations corresponding to the conservation of mass, momentum, and convection-diffusion for the mass fraction of solute are solved using a commercial finite volume flow solver. We consider six configurations of channel ...
متن کاملForward Osmosis in Wastewater Treatment Processes.
In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water i...
متن کاملPerformance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis
Forward osmosis (FO) has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2) and potassium bicarbonate (KHCO3) as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments we...
متن کاملDEVELOPMENT OF A DC MOTOR ASSISTED HYDRAULIC BRAKING SYSTEM FOR AUTOMOTIVE USE
ABSTRACT: Deceleration or stopping the vehicle without any diving and lateral acceleration is essential to develop an effective braking system. The hydraulic braking system with intelligent braking called Antilock Braking system (ABS) and Electronic Stability Control (ESC) has been introduced. However, due to the insufficient human effort, the ABS and ESC to some extent, not function well...
متن کامل